16. 다중 랜덤 변수 (Multiple Random Variables)
지금까지는 랜덤 변수가 하나인 경우에 대하여 다루었다.
이제부터는 랜덤 변수가 2개 이상이 되어, 확률 공간이 실수축이 아닌 고차원 공간을 갖게 된다.
예를들어 $Y=X+Z$에서 $X$와 $Z$가 독립된 랜덤 변수일 때, $Y$는 두 변수의 영향을 받아 변화한다.
누적 분포 함수 (Joint CDF)
다중 랜덤 변수의 CDF는 Joint CDF라고도 불리며, 아래와 같이 나타낸다.
$$ F_{X,Y}(x,y) = P[X\leq x, Y\leq y] $$
다중 랜덤 변수의 CDF는 아래와 같은 성질들을 갖는다.
$$\begin{align*} &1) 0\leq F_{X,Y}(x,y)\leq 1 \\
&2)F_{X,Y}(\infty , \infty) = 1\\
&3)F_X = F_{X,Y}(x,\infty) \\
&4)F_Y = F_{X,Y}(\infty , y)\\
&5)F_{X,Y}(x, -\infty ) = 0>
\end{align*}
$$
확률 질량 함수 (Joint PMF)
다중 랜덤 변수의 확률 질량 함수는 아래와 같이 표현한다..
$$ P_{X,Y}(x,y) = P[X=x, Y=y] $$
$X, Y$ 평면 위의 집합 $B$의 확률은 다음과 같다.
$$ P[B] = \sum_{(x,y)\in B} P_{X,Y}(x,y) $$
Marginal PMF
Joint PMF $P_{X,Y}(x,y)$로부터 산출된 $P_X(x)$와 $P_Y(y)$를 Marginal PMF라 한다.
$$ P_X(x) = \sum_{y \in S_Y} P_{X,Y}(x,y) $$
확률 밀도 함수 (Joint PDF)
이산 확률 변수에 사용하는 PDF를 다중 랜덤 변수에선 Joint PDF라고도 부른다.
$$ F_{X,Y}(x,y) = \int^x_{-\infty} \int^y_{-\infty} f_{X,Y}(u,v) dvdu $$
$$ f_{X,Y}(x,y) = \frac{\partial ^2 F_{X,Y}(x,y)}{\partial x \partial y} $$
Marginal PDF
$$f_X(x) = \int ^\infty _{-\infty} f_{X,Y}(x,y) dy$$
'학부 수업 > 확률과 통계' 카테고리의 다른 글
18. 유도된 랜덤 변수의 확률 모델 (Probability Model of Derived Random Variables) (0) | 2020.06.21 |
---|---|
17. 독립 랜덤 변수와 두 변수의 관계 (Independent Random Variables, Correlation of Two Variables) (1) | 2020.06.20 |
15. 혼합 랜덤 변수와 델타 함수 (Mixed Random Variables and Delta Function) (0) | 2020.06.03 |
14. 가우시안 랜덤 변수 (Gaussian Random Variable) (0) | 2020.06.01 |
13. 연속 랜덤 변수의 종류 (Families of Continuous Random Variables) (0) | 2020.05.20 |
댓글
이 글 공유하기
다른 글
-
18. 유도된 랜덤 변수의 확률 모델 (Probability Model of Derived Random Variables)
18. 유도된 랜덤 변수의 확률 모델 (Probability Model of Derived Random Variables)
2020.06.21 -
17. 독립 랜덤 변수와 두 변수의 관계 (Independent Random Variables, Correlation of Two Variables)
17. 독립 랜덤 변수와 두 변수의 관계 (Independent Random Variables, Correlation of Two Variables)
2020.06.20 -
15. 혼합 랜덤 변수와 델타 함수 (Mixed Random Variables and Delta Function)
15. 혼합 랜덤 변수와 델타 함수 (Mixed Random Variables and Delta Function)
2020.06.03 -
14. 가우시안 랜덤 변수 (Gaussian Random Variable)
14. 가우시안 랜덤 변수 (Gaussian Random Variable)
2020.06.01